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We explored the nature of 37 spatial dimensions in Italian, such as LUNGO�CORTO

(LONG�SHORT), INIZIO�FINE (BEGINNING�END), and CONVERGENTE�DIVER-

GENTE (CONVERGENT�DIVERGENT). In Study 1 we investigated their metric
structure. We asked: (1) Are the extensions of the two poles (P1 and P2) the same?
(2) What proportion of each dimension can be said to be neither P1 nor P2? and
(3) Is the extension of P1 that can be called neither P1 nor P2, the same as the
extension of P2 that can be called neither P1 nor P2? In Study 2 we investigated the
topological structure of the dimensions. We asked: (1) Are the poles, points or
ranges? (2) Do intermediates (neither P1 nor P2) exist? and (3) If they do, are they
points or ranges?

Two metric properties explained a considerable proportion of the variation in
the responses in the first task: (1) the asymmetry of the extension of the two poles
and (2) the extension of the ‘‘neither�nor’’ region between them. The results of the
topological task further refined the two-dimensional structure obtained in Study
1 to produce a map of spatial opposites.
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Our methods and the resulting maps provide a point of departure from which
two questions can be investigated: (1) If these methods were used in other
languages to study spatial opposites, to what extent would they produce similar
maps of opposites? and (2) If these methods were applied to nonspatial opposites
and maps analogous to our spatial maps were generated, would any dense regions
in the nonspatial maps coincide with sparse regions in the spatial maps? We
discuss the potential importance of these questions.

Keywords: Opposites; Dimensions; Spatial; Metric and topological.

Opposites and bipolar dimensions have been pervasive in human thought.

They were, for example, of fundamental importance both to Greek (Lloyd,

1966/1992) and Chinese philosophy (Fung, 1948/1976).

In psychology, the relation between dimensions and opposites has

generally been thought to be simple: the endpoints or poles of a dimension

are opposites. Between these poles, the quantities that characterise these

dimensions have been considered to form at least ordinal scales (Clark,

1993). Data obtained using rating scales are analysed as if they directly

represented a psychological interval scale (Breivik, Bjornsson, & Skovlund,

2000; Rosnow, 2000) or manifestations of psychological latent scales (Givon

& Shapira, 1984; Mair & Hatzinger, 2007).

THE NATURE OF INTERMEDIATES

Ogden (1932/1967) was perhaps the first to observe that such a conception of

the relations between dimensions and opposites may be insufficient. He

distinguished between two types of opposites: (1) series opposites, the poles on

either end of a dimension and (2) cut opposites, which he illustrated as follows:

If we decide that inside and outside are opposites generated by a cut, there is no

question of a series, and the one side is finite and the other side is infinite; for

although we can speak of ‘‘further inside’’ or distinguish degrees of exteriority,

thus making quantitative gradations on either side of the dividing line, this is a

secondary consideration, and it is significant that the opposition begins, as it

were, immediately the line is crossed. (Ogden, 1932/1967, p. 58)

This distinction is parallel to the linguistic distinction between opposites

involving a pair of gradable adjectives, such as DIRTY�CLEAN, and

complementary opposites, such as DEAD�ALIVE. DIRTY and CLEAN are called

gradable adjectives because they: (1) admit degree modifiers (such as fairly,

very, and extremely) and (2) can be used comparatively (cats are CLEANer than

dogs). In contrast, DEAD and ALIVE are called complementary opposites,

because they do not admit degree modifiers, and cannot be used compara-

tively (Kennedy & McNally, 2005; Willners & Paradis, 2006). For example, it
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would be unusual to say Mayan is a very DEAD language (although it could

be taken as irony), or Latin is not as DEAD as Mayan (although it could be

understood metaphorically).

As it turns out, further distinctions among gradable opposites are needed

(Cruse & Togia, 1995). We expect gradable adjectives to have a middle term.

For example, if something is not HOT, it could be any temperature from

WARM to COLD. However, the DIRTY�CLEAN dimension, which (as we saw

earlier) is gradable, does not have a middle term. Whenever we say that

something is not CLEAN, we might as well say that it is DIRTY.

Likewise complementaries, which are not supposed to have a middle term,

may be used as if they were gradable: we might say that someone is barely

ALIVE.
Thus a theory of opposites must have the means to capture a variety of

intermediates. It must be able to describe dimensions that behave like a

continuum, such as HOT�COLD, those that do not have a middle term, such as

DIRTY�CLEAN, and those that straddle a cut, such as INSIDE�OUTSIDE.

THE NATURE OF POLES AND CUTS

To capture the nature of opposites we must also characterise the poles

themselves (Kennedy, 2007; Kennedy & McNally, 2005). Modifying the

Kennedy (2007) terminology slightly, we can distinguish between: (1) closed

poles, which are the minimum or the maximum of a scale, such as closed in

OPEN�CLOSED or both EMPTY and FULL in EMPTY�FULL and (2) open poles,

which are unbounded, such as tall in SHORT�TALL (for related ideas, see

Gardenfors, 2000, 2007).

Kennedy’s idea invokes basic topology (Weisstein, 2008), which can be

applied to understanding opposites. Beginning with a continuous line, we

delimit a portion of it by two endpoints, a and b, to create an interval. Each

endpoint can be a pole or a cut.

Figure 1 shows six kinds of intervals. If a and b are included in the interval

(so that it consists of the points a5x5b), the interval is called closed, and is

denoted [a, b] (Figure 1a). If neither a nor b is included (it consists of the

points aBxBb), the interval is called open, and is denoted (a, b) (Figure 1b).

a b

(a) closed interval [a, b]

a ba b

(b) open interval (a, b)

a b

(c) half–closed interval [a, b)

ba

(d) half–closed interval (a, b]

a b

(e) closed ray [a, ∞)

a ba

(f) open ray (a, ∞)

Figure 1. Six types of intervals.
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If a is included and b is not (a5xBb) or vice-versa (aBx5b), the interval is

called half-closed, and is denoted [a, b) or (a, b] (Figure 1c and d). If one of

the endpoints is 9�, then the interval is called a ray. If a ray includes the

finite endpoint, it is a closed ray and is denoted [a, �) (Figure 1e); if it

doesn’t, it is an open ray denoted (a, �) (Figure 1f). (A single point is treated

as a degenerate interval, denoted [a, a].)

THEORY

We propose to discover the psychological structure of dimensions by

considering two types of properties: (1) topological and (2) metric.

Topological considerations

Using the topological tools just described, we can identify six types of spatial

dimensions, shown in Figure 2. Each pole can be:

. an open ray, such as in LEFT, RIGHT (Figure 2a). In this example, one

pole approaches the other at a point of reference, which is not an

element of either pole. In the case of LEFT�RIGHT, this point represents a

surface, which is the sagittal plane, the plane of symmetry of a mirror-

symmetric body that has a front and a back.

. a half-closed interval, such as ASCENDING or DESCENDING (Figure 2c).

Each of these poles includes its maximum: neither one can ascend more

steeply than vertically, nor can one descend more steeply than vertically.

As in the previous cases there is a point of reference, which is neither

ASCENDING nor DESCENDING.

. a closed ray, such as the OUTSIDE pole of the INSIDE�OUTSIDE pair

(Figure 2b). Here the boundary (such as a wall) is often thought to

belong to this pole. For example, a vine climbing on a wall of a house is

on the wall and yet outside the house.

LEFT

sagittal plane

neither/nor RIGHT

(a) Two open rays separated by
a cut.

INSIDE

boundary surface

neither/nor OUTSIDE

(b) A half–closed interval and a
closed ray separated by a cut.

levelverticallyup

neither/nor

verticallydown

ASCENDING DESCENDING

(c) Two half–closed intervals
separated by a cut.

neither/norEMPTY FULL

(d) Point–poles separated by
an open interval that coincides
with a neither/nor interval.

CLOSED either/or OPEN

(e) Either a point–pole or an
open interval.

SUPPORTED either/or UNSUPPORTED

(f) Either one point pole or the
other.

Figure 2. Six examples of dimensions.
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. a point, such as EMPTY, FULL, CLOSED, SUPPORTED, and UNSUP-

PORTED. Consider the EMPTY�FULL pair (Figure 2d): when even an

infinitesimal quantity is introduced into the container it is neither

EMPTY nor FULL. Furthermore, until it is FULL to the brim it remains
neither EMPTY nor FULL. Thus here the neither/nor interval is

identical with the interval between the two poles. Similarly, CLOSED

is a point, since when a container or a barrier is even infinitesimally

opened, it is OPEN (Figure 2e). An analogous argument holds for

SUPPORTED and UNSUPPORTED (Figure 2f).

Between the poles there can be the following relations (Figure 3):

. they allow for intermediate states (Figure 2a�d). Among these neither/

nor sets we can distinguish two classes: neither/nor is an

� isolated state (Figure 2a�c) and

� open interval (Figure 2d).

. they do not allow for intermediate states, i.e., either one pole or the

other is the case (Figure 2e and f).

Metric considerations

Compare the dimensions LEFT�RIGHT and SMALL�LARGE. As Figure 2

shows, the former is symmetric. We tend to think that the range of things on

our right and the range of things on our left are equal. However, it is likely

that we think that the scope of large things is greater than the scope of

small things. If, for example, we asked ourselves how to partition a line to

represent this imbalance, we might expect to see something like Figure 4.

In this Figure, the interval between SMALL and LARGE, denoted G, has been

partitioned into two unequal intervals, g and g: (There also might be an

asymmetry between the scope of things that are neither SMALL nor LARGE.

We will show how to address this question and the question of measuring

asymmetries empirically later, when we describe the experiments.)

To make the idea of asymmetry more precise, we need to consider in what

sense there may be fewer things that are SMALL than things that are LARGE.

intermediates
between poles?

present
(neither/nor)

pisolated open interval

none
(neither/nor)

Figure 3. The three types of intermediates between poles.
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We do not mean the number of objects we encounter that are small or large;

it is likely that we interact more frequently with small things than with large

ones. Nor do we mean the number of types of objects we encounter that are

small or large; it is also likely that we interact more frequently with small

types of things than with large ones.

Rather the question is, How to put these objects or types of objects into a

finite number of bins? The problem is closely related to the statistical

problem of determining how to assign continuous data to bins in a

histogram. In Figure 5 we compare two histograms (based on an example

of Fox, 2002, §3.1.1) in which the boundaries between bins in the histogram

on the left were chosen to be ‘‘pretty’’ numbers, and the boundaries between

bins in the histogram on the right were chosen to maximise informativeness.

As a consequence, potentially important details obscured in the left-hand

histogram, become visible in the right-hand histogram.

We are proposing that the intuition that g is wider than g is based on the

number of bins we tend assign to g (Ng) and to g (Ng); leading us to partition

Figure 4. Asymmetry: g is the interval in which we would rather call something SMALL than

LARGE; g is the interval in which we would rather call something LARGE than SMALL; and G is

the range of sizes of things to which we might apply the adjectives SMALL or LARGE.

Simple

income

F
re
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en

cy

0 5000 10000 20000 30000

0

10

20

30

40

50

Freedman & Diaconis

income

F
re
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en

cy

0 5000 10000 15000 20000 25000

0

5

10

15

20

25

Figure 5. Two histograms of the average income of job holders, in Canadian dollars, in 1971

(Fox, 2002, §3.1.1). In the case labelled ‘‘Simple’’, the number of bins is N��10 log (10n)�; in the

case labelled ‘‘Freedman and Diaconis (1981)’’, N�
n1=3R

2 IQR
; where �� is the symbol for the floor

operation, n is the number of observations, R is the range of X, and IQR is the inter-quartile

range of X.
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the dimension in the proportion g/g�Ng/Ng: But how to interpret these

bins? We think of them as G-experience bins.

Suppose g is SMALL, g is LARGE, and the dimension is size, which is

continuous. Consider two ants: one large and the other small. Since you can
readily tell that one is bigger than the other you would say that they differ in

size. If, however, you were asked whether there was a qualitative size

difference between them, taking into account the range of all object sizes,

from the smallest thing you can see (say, a grain of sand) to the biggest thing

you can see (perhaps a tall and wide rock wall that exceeds your visual field),

you might choose to place them in the same size-experience bin. On the other

hand, you might decide that because there is a qualitative size difference

between the size of ants and the size of butterflies or nuts, they belong in
different size-experience bins, whereas you might assign butterflies and nuts

to the same size-experience bin.

Once the concept of G-experience bins is clear, it is not difficult to take

the next step: estimate the number of G-experience bins to which the

adjective g applies better, Ng, and the number of G-experience bins to

which the adjective g applies better, Ng: The value of Ng/Ng allows us to

partition G.

Preview and rationale of methods

In this article, we report on three studies to investigate opposition. Several

assumptions underlie the design of these studies. We first describe each
noteworthy feature of these studies, and then explain why it was chosen

rather than a more conventional design.

Participants and setting

The participants were undergraduate students at the Milan Institute of

Technology. This was a class project that took place at the very beginning of

a course on The psychology of space perception and representation, before

opposites were discussed in class.

Since the authors entertained no hypotheses regarding the structures

that would emerge, the participants were naive. The participants were not

randomly sampled from the population, which is true of most*if not all*
psychological experiments. However, the choice of this group maximised the
likelihood that the participants were interested in the topic at hand.

Furthermore, because they would eventually be involved in discussions of

the results, there was reason to believe that they were willing to invest

considerable effort in the tasks. Indeed the three studies collectively took 13.5

hours. Using motivated participants, such as the authors themselves, is

common in psychophysics (e.g., Cass, Stuit, Bex, & Alais, 2009; Hecht,

Shlaer, & Pirenne, 1941).
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Performance in groups

The studies were conducted in a large classroom, equipped with long

tables (about 1�5 m) on which had been placed large blank sheets (A3) of

writing paper. They divided themselves into groups of three or four and sat

far enough so as not to influence each other. We considered these 19 groups

as the units of our study.

There is evidence that group performance is superior to individual

performance (Kocher & Sutter, 2005; Liang, Moreland, & Argote, 1995),

that they more readilyovercome fixation in problem-solving (Smith, Bushouse,

& Lord, 2010, also known as functional fixedness, Duncker, 1945), they are

more creative (De Dreu, Nijstad, & van Knippenberg, 2008), and that a group

size of three to four is optimal (Wheelan, 2009). Most important, ‘‘groups

generally decrease variability in the way information is processed, compared

with individuals’’ (Hinsz, Tindale, & Vollrath, 1997).

Instructions

At the beginning of the first session, the experimenters explained that they

wanted the participants to help them discover the basic properties of space.

In order to draw upon a broad spectrum of spatial experiences, they asked

participants to base their list of spatial properties on: (1) What they could see

around them: ‘‘Look at things in this room and notice their spatial properties

as well as the spatial relations between them. You should also consider what

you can see through the windows’’ and (2) What they could not see at the

moment: ‘‘Consider also environments that you cannot see right now. For

instance, you might consider the spatial properties and relations you see

when you look out of the windows of the upper floor of this building or when

you’re in the subway, or when you’re on the beach, looking at the horizon.

Since the final list must be consensual, and should only include properties on

which all of you agree, be sure not to add an item to the list unless everyone

grasps exactly what it means’’. The experimenters made it clear that they

were neither asking them about the semantics of Italian nor about the

metaphorical use of spatial terms (e.g., ‘‘I feel marginalised’’ and ‘‘I feel close

to my best friend’’).

Focus on spatial dimensions

The three studies focus on spatial dimensions for two reasons: (1) it was

pragmatically convenient to restrict the study to a familiar and well-defined

set of dimensions and (2) the perception and description of space are of

interest in their own right (Coventry & Garrod, 2004; Landau & Jackendoff,

1993; Talmy, 1983).
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Phenomenology

In these studies we used incorrigible phenomenological reports. This is not

uncommon in psychology: any time we use a Likert scale we accept the

participants’ marks on the scale at face value. Indeed, this work is an instance

of ‘‘phenomenological psychophysics’’ (Kubovy, 2003), which is related to the

experimental phenomenology of Bozzi (1989, Chapter 7, summarised by

Kubovy, 1999, and discussed in relation to the present task by Savardi &

Bianchi, 2000). Our methods are (to paraphrase Kubovy & Gepshtein, 2003,

p. 45) ‘‘phenomenological: they rely on the reports of observers about their

phenomenal experiences. They also are psychophysical: they involve

systematic exploration of stimulus spaces and quantitative representation

of perceptual responses to variations in stimulus parameters’’.

Are we asking for linguistic intuitions?

In the preliminary study*where we ask the participants to give us pairs of

opposites*we are. However, as will become clear later, in the subsequent

studies the instructions emphasised that the tasks were to be done in relation

to spatial experiences; Italian semantics were not mentioned, nor did any of

the participants raise the question. Nevertheless, in the absence of a

manipulation check, this question must remain unanswered. We return to

this issue in Section ‘‘General Discussion’’.

PRELIMINARY STUDY: SPATIAL PROPERTIES
AND RELATIONS

In our preliminary study, we obtained our list of spatial dimensions and

opposites. The 57 participants divided themselves into 19 groups. The

experimenters asked each group to produce a consensual list of as many

spatial properties as possible without being redundant. They pointed out

that this was not something the participants could know from the outset, and

that the answers would emerge from their collective effort. They did their

best to create a collaborative and informal atmosphere and gave the groups

as much time as they needed (about 90 min).

They asked the groups to produce lists that were exhaustive, so that they

contained all the terms needed to describe any spatial environment. Most of

the interactions among the members of the groups were devoted to describing

different spatial environments and objects and finding the best term to refer to

a property and eliminating synonyms (e.g., ‘‘long’’ vs. ‘‘elongated’’, ‘‘big’’ vs.

‘‘enormous’’, and ‘‘angular’’ vs. ‘‘peaked’’ vs. ‘‘sharp’’).

The groups collectively produced lists of 60 and 80 terms. After synonyms

were removed, a list of 74 terms was compiled from words mentioned by at
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least 80% of the groups. For the most part, these were adjectives or adverbs.

They fell into four groups: (1) shape of space; (2) orientation; (3) extension/

quantity; and (4) localisation. Each of the properties mentioned had its

opposite within this list. The 74 terms were arranged in 37 pairs (Table 1).

STUDY 1: THE METRIC STRUCTURE OF DIMENSIONS

Method

About 41 of the undergraduates from the preliminary study participated in

two three-hour sessions, in successive weeks. They were randomly assigned to

10 groups of four and one group of five, and were tested concurrently in the

same room.

Each group was given a sheet of 37 labelled scales (Figure 6). At the ends

of each scale were labels representing spatial opposites. The distance between
the endpoints (10 cm), represented the range of spatial experiences between

these opposites (or in other words the dimension). Each scale consisted

of two stacked rectangles. The order of the dimensions within each list and of

the poles within each dimension was randomised between groups.

The participants were given two tasks, each of which focused on a

different aspect of the dimension’s structure.

Task 1

In the first task, they were asked to draw a vertical boundary between

opposites in the upper rectangle (Figure 7). Take, for example, the near�far

dimension. It was made clear that they had to mark this line taking into

account that the total length of the scale represented the whole range of
variations of distances of things between the nearest and the farthest.

To carry out the task, the participants were asked to first consider objects in

the classroom. They were invited to interact with these objects. For example,

they could vary the openness of a door while discussing OPEN�CLOSED, or to

place objects of different sizes on the table while considering SMALL�LARGE.

They were not, however, restricted to discussing objects that were present.

The instructions stressed that we did not want them to rely on their knowledge

of the true physical measures of objects, but rather on how these objects normally
appeared. For instance, although we know that stars are huge, they look small.

They might therefore fall into the same size-experience bin as a fly.

As we mentioned earlier this task is an instance of phenomenological

psychophysics. It differs from psychophysics because it offers no correct or

incorrect responses. Nevertheless, this work is not unlike scaling in the

tradition of Fechner: to develop a scale of size, one might measure a

succession of jnds between objects of similar sizes. In contrast, our G scale

10 BIANCHI ET AL.
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TABLE 1
Characteristics of opposition pairs

g�g Abbreviation l r ll rr m lln rrn asym2 asym3

1 dentro�fuori inside�outside INSD�OTSD 0.50 0.50 0.47 0.44 0.099 0.93 0.88 0.079 0.077

2 appoggiato�sospeso supported�unsupported SPPR�UNSP 0.51 0.49 0.48 0.47 0.045 0.95 0.96 0.057 0.026

3 sdraiato�in piedi lying down�standing LYND�STND 0.52 0.48 0.15 0.31 0.540 0.29 0.65 0.129 0.359

4 illimitato�limitato unbounded�bounded UNBN�BNDD 0.52 0.48 0.50 0.45 0.050 0.95 0.94 0.113 0.043

5 destra�sinistra right�left RGHT�LEFT 0.52 0.48 0.47 0.43 0.100 0.90 0.90 0.040 0.012

6 spigoloso�arrotondato angular�rounded ANGL�RNDD 0.55 0.45 0.47 0.40 0.122 0.86 0.89 0.108 0.082

7 a fondo�a galla sunken�floating SNKN�FLTN 0.55 0.45 0.20 0.21 0.590 0.37 0.46 0.104 0.139

8 verticale�orizzontale vertical�horizontal VRTC�HRZN 0.57 0.43 0.30 0.34 0.362 0.51 0.76 0.194 0.298

9 convesso�concavo convex�concave CNVX�CNCV 0.57 0.43 0.55 0.41 0.037 0.96 0.96 0.145 0.033

10 fine�inizio end�beginning END�BGNN 0.57 0.43 0.13 0.25 0.623 0.23 0.58 0.173 0.344

11 dritto�rovescio upright�upside down UPRG�UPSD 0.58 0.42 0.51 0.34 0.143 0.89 0.81 0.180 0.102

12 divergente�convergente divergent�convergent DVRG�CNVR 0.58 0.42 0.55 0.39 0.055 0.96 0.93 0.173 0.030

13 sopra�sotto above�below ABOV�BELW 0.59 0.41 0.47 0.33 0.202 0.80 0.79 0.177 0.076

14 in salita�in discesa ascending�descending ASCN�DSCN 0.59 0.41 0.50 0.36 0.139 0.84 0.89 0.187 0.065

15 complesso�semplice complex�simple CMPL�SMPL 0.59 0.41 0.36 0.25 0.388 0.60 0.62 0.189 0.135

16 davanti�dietro in front of�behind INFO�BHND 0.60 0.40 0.56 0.37 0.068 0.94 0.92 0.196 0.030

17 lontano�vicino far�near FAR�NEAR 0.61 0.39 0.33 0.35 0.317 0.55 0.89 0.222 0.351

18 ottuso�acuto obtuse�acute OBTS�ACUT 0.61 0.39 0.54 0.31 0.152 0.88 0.80 0.225 0.134

19 in cima�in fondo top�bottom TOP�BTTM 0.62 0.38 0.31 0.10 0.593 0.49 0.26 0.239 0.239

20 grasso�magro fat�slender FAT�SLND 0.63 0.37 0.46 0.22 0.319 0.74 0.58 0.259 0.172

21 asimmetrico�simmetrico asymmetric�symmetric ASYM�SYMM 0.64 0.36 0.52 0.34 0.140 0.82 0.92 0.274 0.130

22 ampio�ristretto ample�restricted AMPL�RSTR 0.65 0.35 0.42 0.24 0.336 0.64 0.70 0.304 0.098

23 lungo�corto long�short LONG�SHRT 0.66 0.34 0.44 0.22 0.337 0.67 0.64 0.323 0.095

24 grande�piccolo large�small LARG�SMLL 0.66 0.34 0.44 0.21 0.344 0.67 0.64 0.328 0.136

25 disordinato�ordinato disordered�ordered DSRD�ORDR 0.67 0.33 0.52 0.28 0.195 0.79 0.84 0.334 0.119

26 tanto�poco many�few MANY�FEW 0.67 0.33 0.43 0.30 0.267 0.65 0.92 0.341 0.278

27 spesso�sottile thick�thin THCK�THIN 0.70 0.30 0.52 0.18 0.299 0.75 0.60 0.397 0.153
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TABLE 1 (Continued)

g�g Abbreviation l r ll rr m lln rrn asym2 asym3

28 pieno�vuoto full�empty FULL�EMPT 0.70 0.30 0.29 0.12 0.587 0.42 0.40 0.399 0.144

29 alto�basso high�low HIGH�LOW 0.71 0.29 0.47 0.20 0.328 0.66 0.70 0.417 0.165

30 irregolare�regolare irregular�regular IRRG�RGLR 0.74 0.26 0.58 0.20 0.222 0.78 0.70 0.470 0.246

31 profondo�superficiale deep�shallow DEEP�SHLL 0.74 0.26 0.39 0.18 0.426 0.53 0.69 0.474 0.248

32 fitto�rado dense�sparse DENS�SPRS 0.75 0.25 0.38 0.22 0.400 0.50 0.88 0.502 0.395

33 storto�diritto curved�straight CRVD�STRG 0.75 0.25 0.64 0.22 0.137 0.86 0.88 0.504 0.131

34 largo�stretto wide�narrow WIDE�NRRW 0.76 0.24 0.55 0.13 0.319 0.72 0.55 0.524 0.204

35 incompleto�completo incomplete�complete INCM�CMPL 0.80 0.20 0.67 0.16 0.167 0.84 0.82 0.608 0.169

36 mosso�immobile moving�still MVNG�STLL 0.84 0.16 0.82 0.15 0.029 0.97 0.97 0.685 0.045

37 aperto�chiuso open�closed OPEN�CLSD 0.87 0.13 0.76 0.10 0.135 0.87 0.83 0.739 0.157
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is an ordinal scale that consists of a succession of equivalence sets, that we call

size bins, and are quantitatively ordered. Each size bin is supposed to contain

categories of object-size-experiences that are deemed by judges to be

homogeneous, even though their sizes may be noticeably different.

Task 2

As we mentioned earlier, not HOT is not the same as it’s opposite, COLD

(Paradis & Willners, 2006). Likewise, not WIDE (Table 1, Line 34) is not the

same as NARROW. This suggests that some dimensions can be subdivided

further.

In the second task, we assessed the proportion of the dimension that is

neither g (e.g., not WIDE, denoted �g) nor g (e.g., not NARROW, denoted �g):

gg (e.g., neither WIDE�nor NARROW). To respond, the participants drew two

lines in the bottom rectangle, on either side of the line drawn in the upper

rectangle, to indicate this proportion. These lines were not required to be

equidistant from the first (see Figures 7 and 8).

Results and discussion

From the data obtained in the two tasks (e.g., Figure 8) we calculated the

nine quantities in Table 2 (their means are given in Table 1). For further

analysis we chose five nonredundant measures (i.e., they are sufficient to

calculate the other four measures, and cannot be derived from each other):

m, asym2, lln, rrn, and asym3.

Although the five measures used in our analyses could have been

independent, a correlation matrix shows that they are not. Although asym2

is by and large independent of the others, with median (jrj)�0.08, the

correlations among the remaining four are high: median (jrj)�0.54.

INCOMPLETE COMPLETE

Figure 6. Example of a blank scale used for both tasks in Study 1.

FAR NEAR

BEGINNING END

CLOSED OPEN

Figure 7. The proximity, span, and openness scales partitioned with the mean values obtained

in both tasks in Study 1 (Table 1, Lines 17, 10, and 37).
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To reveal the structure of these correlations, we used a principal

component analysis (PCA, see Venables & Ripley, 2002, pp. 302�305). The

first two PCAs account for 89% of the variance; adding a third accounts for

98% of the variance. The first two components are plotted in Figure 9. Its

main features can be summarised as follows:

(1) Horizontal axis: m, lln, and rrn.

On the left, dimensions with large m (m�0.54), i.e., a large fraction

of each of these dimensions is neither one pole nor the other. For

example: FULL�EMPTY (m�0.58); TOP�BOTTOM (m�0.59); and

END�BEGINNING (m�0.62).

On the right, dimensions with m:0, i.e., only a minuscule fraction

of each of these dimensions is neither one pole nor the other. As a

result, lln (the fraction of l covered by ll) and rrn (the fraction of r

covered by rr) are large: they nearly cover the dimension. For

example: SYMMETRIC�ASYMMETRIC (m�0.14); in FRONT OF�

BEHIND (m�0.06); and DIVERGENT�CONVERGENT (m�0.05).

(2) Vertical axis: asym2
At the bottom, symmetric dimensions (low values of asym2). For

example: RIGHT�LEFT (asym2�0.04); SUPPORTED�UNSUPPORTED

(asym2�0.05); and SUNKEN�FLOATING (asym2�0.10).

l = 0.8 r = 0.2

ll = 0.67 m = 0.167 rr = 0.16
INCOMPLETE COMPLETE

Figure 8. Partitioning of the incomplete�complete scale, with five of the measures given on

Line 35 of Table 1.

TABLE 2
Nomenclature and symbols. By convention, l]r

Term Description Symbol Task

g-Fraction2 Fraction of the dimension assigned to g l 1

g-Fraction2 Fraction of the dimension assigned to g ra

Asymmetry2 l�r asym2

Interfraction3 Fraction of the dimension that is neither g nor g m 2

g-Fraction3 G on the g side of m ll

g-Fraction3 G on the g side of m rrb

Relative g-fraction3 Proportion of l covered by ll lln

Relative g-fraction3 Proportion of r covered by rr rrn

Asymmetry3 jlln�rrnj asym3c

ar�1�l.
brr�1�ll�m.
cMean(asym3)�mean(lln)�mean(rrn).
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On top, asymmetric dimensions (high values of asym2). For

example: OPEN�CLOSED (asym2�0.73) and MOVING�STILL

(asym2�0.68).

STUDY 2: THE TOPOLOGY OF DIMENSIONS

From Study 1 we obtained, for each dimension, an estimate of the

proportion of the dimension covered by each pole and by neither. This

study did not address the topological features of the dimensions that occur at

−0.3 −0.2 −0.1 0.0 0.1 0.2

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

abov−belw

ampl−rstr

angl−rndd

ascn−dscn

asym−symm

cmpl−smpl
cnvx−cncv

crvd−strg

deep−shll

dens−sprs

dsrd−ordr

dvrg−cnvr
end−bgnn

far−near
fat−slnd

full−empt

high−low

incm−cmpl

info−bhnd

insd−otsd

irrg−rglr

larg−smll
long−shrt

lynd−stnd

many−few

mvng−stll

obts−acut

open−clsd

rght−left

snkn−fltn sppr−unsp

thck−thin

top−bttm

unbn−bndd

uprg−upsdvrtc−hrzn

wide−nrrw

−1.5 −1.0 −0.5 0.0 0.5 1.0

−0.5

0.0

0.5

1.0

m

llnrrn

asym2

asym3

Figure 9. Study 1: biplot (Gabriel, 1971) of the first two principal components. Miniature

versions of Figure 8 show that the difference between the number of G-bins for each pole (i.e.,

their asymmetry) grows along the ordinate, and that the sharpness of the transition between the

g and the g (the extent of m) experiences grows along the abscissa. The biplot in this Figure and

Figure 12 were rotated into Procrustean agreement (Dray, Chessel, & Thioulouse, 2003; Gabriel,

1971). [To view this figure in colour, please visit the online version of this Journal.]
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the edges of these regions. Its data could not distinguish between points and

intervals, between open intervals or rays and closed intervals or rays. We

address the topology of poles and intermediates in turn.

The topology of poles

We can ask two questions: (1) Is a pole a point or an interval? (2) If it is an

interval, is it open or closed?

(1) Is g (or g ) a point or an interval?

According to the results of Study 1, VERTICAL�HORIZONTAL and

COMPLEX�SIMPLE are similar, because they are close in the space of Figure

9. That means that they are metrically similar. Topologically, however, they

are different:

COMPLEX�SIMPLE. An object can be COMPLEX or SIMPLE in many

different ways and to different degrees: x can be more COMPLEX or SIMPLE

than y. Here both g and g define intervals.

VERTICAL�HORIZONTAL. In contrast, there is only one way for an object

to be VERTICAL and only one way for an object to be HORIZONTAL. Here

both g and g are points. In the language of G-experience bins, if g reduces to a

point, Ng�1. Study 1 provided no way to distinguish between small values

of Ng and Ng�1.

(2) If g (or g) is an interval, is it open or closed?

Because OBTUSE�ACUTE and SYMMETRIC�ASYMMETRIC are close in the

space of Figure 9, they are metrically similar. They can, however, be

distinguished by their topology:

OBTUSE�ACUTE. An angle is most OBTUSE when it is as large as possible

while being less than 3608, whereas an angle is most ACUTE when it is as

small as possible while being greater than 08. In topology this is called a

closed interval. Consider the set of points U on a line between 0 and 1, and

focus on the region around 0. If we think of the set U as containing 0 (i.e.,

U]0) then U is closed on the left.

SYMMETRIC�ASYMMETRIC. If U does not contain 0 (i.e., U�0) then U

is open on the left: the distance of any point from the edge is always nonzero.

Thus the upper edge of ASYMMETRIC is open: we can perceive a thing as

being very ASYMMETRIC, but it could always be more ASYMMETRIC. Thus,

technically speaking, it’s an open ray.
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
b
o
v
y
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
2
:
4
7
 
2
8
 
A
p
r
i
l
 
2
0
1
1



Topology of intermediates

Here too we ask two questions: (1) Do intermediates exist? (2) If they exist,

do they form an interval, or do they reduce to a point?

(1) Do intermediates exist?

Study 1 shows that both OBTUSE�ACUTE and SYMMETRIC�ASYMMETRIC

have low proportions of m. However, there are no intermediates between

SYMMETRIC and ASYMMETRIC: a figure is either one or the other; whereas

there is an intermediate between OBTUSE�ACUTE: the 908 angle.

(2) If they exist, do they form an interval, or do they reduce to a
point?

We have seen that the extension of m is very similar for ASCENDING�

DESCENDING and UPRIGHT�UPSIDE DOWN. Topologically, however, they are

different: there is only one intermediate between ASCENDING and DESCEND-

ING (to be level), whereas the intermediates between UPRIGHT and UPSIDE

DOWN form an interval.

Method

About 54 of the undergraduates from the preliminary study (forming 18 new

groups of three) participated in two weekly sessions, each lasting 3 hours.

The sessions took place during the weeks that followed Study 1.

To convey our topological concepts to the participants, we had to make

them less abstract. To achieve this, we translated these terms into everyday

language. This meant that in some cases we had to combine some topological

distinctions into single terms. This was the case with the distinction between

ray and interval. These were merged into a less technical term, range. We also

did not use the distinctions between closed and half-closed intervals or

between open and half-open intervals. Instead we asked about each pole

whether it was bounded or unbounded at its extreme value. Figure 10

summarises the topological taxonomy as presented to the participants.
The 37 spatial dimensions were listed in a table. For each dimension, three

metric characteristics*corresponding to l, r, and m in Study 1*were listed

in three columns. They were labelled Pole A, intermediate, and Pole B. For

each group of participants, the assignment of dimensions to rows and the

right�left positions of the poles were randomised.

We asked the participants to indicate, for each dimension: (1) ‘‘Do the poles

identify a unique point of experience or a range of experiences? If it is a range of

experiences, is the range bounded or unbounded; that is, is there a well-defined

experience which delimits the maximum possible degree of the property’’? and
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(2) ‘‘Are there intermediate states (neither small, nor large)? If so, are there

many of such states, or just one’’? The instructions were given orally at the

beginning of the session; they were also written at the top of the response sheet.

Results and discussion

We coded responses to g and g (the two poles) as P (point), B (bounded

range), or U (unbounded range), and the responses to gg (i.e., neither g nor

g) as N (none), P (point), or R (range). We then identified each response as

an element of the Cartesian product of the three sets {P,B,U}, {N,P,R}, and

{P,B,U}. From these we obtained nine-response types: P��; B��; U��; �N�;

�P�; �R�; ��P; ��B; and ��U.

Contingency analysis

To examine the frequencies of responses, we analysed the three-way

contingency table of the 3�3 possible pairings of responses to the two poles

with the three types of responses to intermediates with the mosaic plot

shown in Figure 11. Each cell is shaded so that it represents the magnitude of

the Pearson residual for that cell i, r(P)
i (the standardised deviation of the

observed frequency in cell i from expected frequency in that cell), which

measures the departure of each cell from independence. The lightest shading

is reserved for cells with values of r(P)
i between�2 and 2; in these the

observed frequency does not depart significantly from the expected. The

darkest-coloured cells deviate significantly (a:0.0001); those with a lighter

shade deviate at a:0.05.

From this mosaic plot we learn that:

Symmetric structures are preferred. Of the seven topological types

represented more frequently than expected (PNP, UNP, BPB, PPP, UPU,

PRP, and URB), five are symmetric.

pair

pole γ

point range

bounded unbounded

intermediates (γ γ)

none exist

point range

pole γ̄

point range

bounded unbounded

Figure 10. The topological structure of dimensions as conveyed to the participants.
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Most structures are either preferred or shunned. Only eight out the 27

cells fail to deviate significantly from expected (which is why the overall

p-value is close to 0). We performed a PCA on the frequencies of the 37

pairs�9 response types. Two, three, and four components accounted for

67%, 87%, and 95% of the variance, respectively. The two-dimensional

solution is shown in Figure 12.

Rather than analyse the results of Study 2 separately, we found that

analysing them together gets us to the important insights most effectively.

JOINT ANALYSIS OF THE TWO STUDIES

In order to compare the results of the two studies, we first rotate the biplots

in Figures 9 and 12 into Procrustean agreement (i.e., the corresponding
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Figure 11. Study 2: a mosaic plot of the three-way contingency table of the 3�3 possible

pairings of responses to the two poles with the three types of responses to the ‘‘neither�nor’’

question (gg): Each of the 27 cells of this plot is proportional to the count of choices it

represents. The table is stratified by the three types of gg responses, each represented by a block

whose height is proportional to the count of the three gg responses. [To view this figure in colour,

please visit the online version of this Journal.]
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matrices are rotated to maximum similarity by minimising the sum of the

squared differences between them, by the method proposed by Dray et al.,

2003, implemented in the R package ade4; see Dray & Dufour, 2007).

Movement of dimensions between the studies

By determining which points moved the most between the two studies, we can

better understand the similarities and differences between the results of the

two studies. Figure 13 shows these changes. (The horizontal and vertical bars

on the upper left side of the plot represent the mean absolute change in the x

and y directions.)
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Figure 12. Study 2: biplot of the first two principal components. This biplot and Figure 9 have

been rotated into Procrustean agreement.

20 BIANCHI ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
b
o
v
y
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
2
:
4
7
 
2
8
 
A
p
r
i
l
 
2
0
1
1



Changes between Studies 1 and 2 are larger in the y direction

We observe that: (1) the mean change in the x direction is Dx�0.36,

whereas in the y direction, it is almost twice as large: Dy�0.68 (Dy�Dx�
0.32, 95% CI�[0.13, 0.51] by one-sample t-test, which is equivalent to a two-

sided test of the null hypothesis thatDy�Dx with a�0.025); (2) if we consider

only the 11 largest changes, the difference between the amount of change in

the two directions is even larger (Dy�Dx�0.74, 95% CI�[0.33, 1.15], one-

sample t-test); and (3) only three dimensions moved further along x than y.

Why did the topological information not cause large horizontal motions?

Because the horizontal axis in Study 1 represents, for the most part, the

width of m, the proportion of intermediates. On the left of the space, m is
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Figure 13. Differences between the biplots for the two studies. The horizontal and vertical bars

on the upper left side of the plot represent the average absolute amount of shift in the two

directions.
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large, on its right, m is small. Since only a metric change can transform a

small quantity into a large one, or vice-versa, adding topological information

can have little effect.

What the topological information adds to the metric information?

Table 3 lists the five largest vertical changes. To see the cause of these

changes, we need to compare the location of the dimension in the metric

space of Figure 9, which is, by and large a function of m and asym2, which

are given in the second and third columns of the table. These values would

place COMPLEX�SIMPLE in the lower left quadrant of Figure 12, a region of

dimensions whose left pole is a point (P��). Since this dimension is of

topological type U��, it had to move upward. The same reasoning applies to

the remaining four dimensions.

The joint space

Having understood the commonalities and the differences between the results

of the two studies, we computed a joint space, to capture the metric and

topological results in one representation (Figure 14). We performed a co-

inertia analysis (CIA) on these two sets of results. This is an extension of

multidimensional ordination methods such as PCA or correspondence

analysis. It summarises data by searching for one axis for each data-set with

maximum covariance, such that they will: (1) be highly correlated and (2)

explain a large percentage of the variance (Culhane, Perriere, & Higgins, 2003;

Culhane & Thioulouse, 2006). The results are shown in Figure 15. In this map,

the first joint (co-inertia) axis is strongly linked to both axes of the PCA of

Study 1, whereas the second joint axis is related to the vertical axis of the PCA

of Study 2. Thus, by rotating the biplots of the two studies into Procrustean

agreement, we have shown that the topological task of Study 2 refines the

metric data of Study 1. It does so by distinguishing between: (1) point poles

and unbounded poles and (2) point intermediates and no intermediates.

TABLE 3
The five largest vertical changes between the two studies

Dimension m asym2 Placed by asym2 Moves toward

COMPLEX�SIMPLE 0.39 0.14 P�� U��
DENSE�SPARSE 0.40 0.40 U�� P��
FAR�NEAR 0.31 0.35 U�� P��
UNBOUNDED�BOUNDED 0.05 0.04 �P� �N�
OPEN�CLOSED 0.14 0.16 �N� �P�

22 BIANCHI ET AL.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
b
o
v
y
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
2
:
4
7
 
2
8
 
A
p
r
i
l
 
2
0
1
1



Clustering

As a final step we clustered the CIA of the joint data to discover whether we

could propose a taxonomy of dimensions and their poles. In order to

determine the optimal number of clusters, we used the PAM (Partitioning

Around Medoids) partition method, which searches for a predetermined

number (say k) of representative dimensions, called medoids (Kaufman &

Rousseeuw, 1990; Struyf, Hubert, & Rousseeuw, 1997). PAM finds k medoids

for which the total similarity of all dimensions to their nearest medoid is

minimal. Medoids are representative objects of a data-set whose average

dissimilarity to all the objects in the cluster is minimal. They are conceptually

similar to centroids, with the exception that a medoid is always a member of

the data-set. In order to determine k, we used Kaufman and Rousseeuw’s

(1990) silhouette plot, in which each cluster is represented by an ordered set of

bars of one colour, a silhouette. Each bar can range from�1 to 1. When a bar’s

height approaches 1, then the corresponding pair lies well within that cluster;

when it is close to 0, it is intermediate between two clusters; and when it

approaches�1, it is poorly classified (i.e., it belongs to a different cluster).

Figure 16 shows the silhouette plot for the results of our CIA, with k�4.

Only five of the 37 dimensions have silhouette values of s(i), below 0.5. The

quality of the clustering is given by the average of the s(i) values, which in

this case is 0.67. Because other values of k produce lower average s(i) values,

0.67 is also the silhouette coefficient, which tells us how much clustering

structure is present in the data (0.25 is considered no structure).

γ > γ̄

γ ≈ γ̄

m 0 m ≈ 0

− N−

− P−P−−

− R−

U−−

Figure 14. The major topological features of opposites (in bold characters) superimposed on

their characteristic metric features.
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The four medoids identified by PAM were INSIDE�OUTSIDE, LARGE�

SMALL, INCOMPLETE�COMPLETE, and FULL�EMPTY (each has either the

largest or the second largest silhouette value in its cluster). They are framed

on the CIA representation of the two studies (Figure 15). The boundary of

each cluster is shown as an ellipse of minimal area such that all of the pole

pairs in a cluster lie on or inside this boundary. The centres of these ellipses are

marked with the symbol � (Pison, Struyf, & Rousseeuw, 1999). Table 4

summarises the clusters.

GENERAL DISCUSSION

We have shown that dimensions and opposites can be exhaustively described

in metric and topological terms. A small number of principal components

−2 −1 0 1 2
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wide−nrrw

Figure 15. Co-inertia (CIA) representation of the results of both studies. Superimposed on this

plot are the four clusters obtained by the PAM partition method. The medoid pair-name of each

cluster is framed. Each cluster is fitted with an ellipse of minimal area such that all of the pairs lie

on or inside its boundary. The names of the pairs in each cluster are distinguished by having a

different font. The centres of the ellipses are marked with the symbol �. [To view this figure in

colour, please visit the online version of this Journal.]
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Figure 16. Silhouette plot for the joint data with four clusters. The framed pair names are the

cluster medoids. [To view this figure in colour, please visit the online version of this Journal.]

TABLE 4
The four clusters of Figure 15, defined by metric properties and refined by topological

properties, account for 78% of the dimensions

Cluster Medoid asym2 m: Topology

Percentage

(%):

I INCOMPLETE�COMPLETE Strong 0 UNPa, UNBb 14

II LARGE�SMALL Moderate 1/3 URBa 19

III FULL�EMPTY Moderate 2/3 PRPa, BRPb, BRB 24

IV INSIDE�OUTSIDE Minimal 0 BPBa, PNPa, UPUa 21

78

aFrequency significantly above expected in the contingency table summarised in Figure 11.
bFrequency below expected.
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account for a large proportion of the metric variation (here three

components accounted for 98% of the metric variation) and the topological

variation (four principal components accounted for 95% of the topological

variation).

To simplify our presentation of the data, we represented the metric data

with two principal components, which account for 89% of the metric

variation, and the topological data with two principal components, which

account for 67% of the topological variation. We concluded that to

characterise a dimension and its poles, we need two types of information,

metric and topological. We require:

Metric information about the:

. asymmetry of the poles, asym2 and

. width of the ‘‘neither�nor’’ region, m.

Topological information about:

. each pole

� bounded (B),

� a point (P), and

� unbounded (U); and
. the ‘‘neither�nor’’ region:

� nonexistent (N),

� a point (P), and

� an interval (range, R).

We also produced two progressively more intuitive*and hence less

accurate*representations of the different types of dimensions and opposites:

. a joint two-dimensional space (Figure 15) and

. a four-fold clustering of opposites and dimensions (Table 4).

The identification of different structures of opposites, which has come out

from our psychophysical tasks, provides a new experimental classification of

opposites based on the perceptual organisation of the variations of a

property in between two opposite extremes which is worth to be compared

with other classifications of opposites developed in linguistic literature, based

on semantic or pragmatic considerations (Cruse, 1986; Jones, 2002; Kennedy

& McNally, 2005; Lyons, 1977).

Before we further discuss our results, we address three methodological

issues:
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Our method of data collection

One might be concerned with the validity of our method for three reasons:

(1) working in groups might produce idiosyncratic results because

(a) all the groups worked in the same setting,

(b) of some subtle group decision-making effect, and

(c) of contamination between the groups;

(2) having done Study 1 might have affected the groups’ judgements in
Study 2 (even though the students belonged to different groups in the

two studies); and

(3) the spatial sophistication of the participants (they were students of

design).

To allay these concerns, one of us (Ivana Bianchi) replicated Study 2 with

a different population (students of philosophy) in a different setting

(University of Macerata). These participants did not previously participate

in Study 1. As the data show (summarised in the Appendix 1), the results

are by and large the same as the results reported here for Study 2.

Our ability to capture ambiguities

Most of our participants described INSIDE�OUTSIDE as PPP (as Ogden,

1932/1967, had done, quoted in the Introduction): the boundary between

INSIDE and OUTSIDE is a point and if one has crossed the threshold from

OUTSIDE, one is inside, regardless of whether one has gone deeply inside

or stayed near the threshold. Some of our participants, however, described

it as BPU, presumably because you can be far inside or far outside an

enclosure, or just inside or just outside its threshold. Likewise, most of the

participants characterised SUPPORTED�UNSUPPORTED as PNP: there is no

intermediate state between being supported and not; each of the poles is a

state that admits no degrees. However, some of them thought that you

could be nearly supported or far from being supported, and chose PNU.

Finally, the most common choice for ABOVE�BELOW was UPU because a

thing can be far above or below another; and yet some treated the pair

as analogous to INSIDE�OUTSIDE, and called it PPP. Unfortunately,

the number of participants in our studies precludes us from investigating

these ambiguities. Had we a much larger number of participants, we

would have been able to take these differences into account, and might

have obtained crisper results.

The generalisability of our methods

Our methods will allow us to answer two further questions:
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(1) To what extent would maps generated from data obtained in other

languages be analogous to the one we obtained here? What are the

criteria for claiming that the maps are similar enough to warrant the

claim of cross-linguistic generalisability? Such generalisability would

imply that opposites transcend any particular language. This would

redouble the efforts to understand their origin.

(2) To what extent would maps generated from data obtained with

nonspatial dimensions, such as BENIGN�MALIGNANT, FOREIGN�LO-

CAL, or DEAD�ALIVE conform to the maps we obtained here? If they

did, this would redouble the efforts to understand how spatial (and

bodily) experiences might undergird cognition.

Although the readers of this article may suspect that some of the pairs used

in this study might not appear in a list generated by native English speakers

(e.g., ample�restricted), by and large our results are consistent with

languages other than Italian. We have asked native speakers of Chinese,

English, French, German, Hebrew, and Spanish whether they found any of

our results inconsistent with their language. The unanimous answer was no.

Indeed considerable evidence suggests that languages are more united by

their spatial semantics (Barsalou, 1999; Glenberg & Robertson, 2000; Logan

& Saddler, 1996; Regier, 1996) than they are divided by them (Bowerman,

1996; Levinson, 1996). Perhaps this is because languages and visual

processing of scenes have been found to match up, suggesting that ‘‘it

should be possible to offer more precise definitions of [spatial terms] as

opposed to many other expressions because the definitions can be grounded

on how we perceive the worlds themselves’’ (Coventry & Garrod, 2004, p. 5).

Such a linkage between language and sensory process may be responsible

for a cross-linguistic consistency between Swedish and Russian temperature

adjectives. According to Koptjevskaja-Tamm and Rakhilina (2006), such

adjectives are:

. . . rooted in human experience of temperature. Language on the whole,

and the linguistic domain of temperature in particular, is . . . governed by

anthropocentricity. First, temperature attributes are chosen relatively to . . .

parameters, that are . . . salient for humans [but] . . . have only very approx-

imate physical correlates . . . Second, [whether] temperature properties [of

physical objects] . . . are . . . worth mentioning . . . depends on [their]

function . . . in . . . human life. (p. 267)

This consistency would be expected from the view of Pecher and Zwaan

(2005):
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Rather than being merely input and output devices, perception and action are

considered central to higher cognition . . . cognitive structures develop from

perception and action. (pp. 1, 2, emphasis ours)

In particular, dimensions and opposites probably have their roots in

prelinguistic cognition, and may therefore transcend any particular language.

For instance, infants understand spatial dimensions and opposites, such as

INSIDE�OUTSIDE, SUPPORTED�UNSUPPORTED, HORIZONTAL�VERTICAL,

TIGHT�LOOSE, OPENING�CLOSING, LEFT�RIGHT, and UP�DOWN before they
acquire spatial language (Casasola, 2008; Casasola, Cohen, & Chiarello,

2003; Hespos & Spelke, 2004; McDonough, Choi, & Mandler, 2003; Quinn &

Bhatt, 2005; Quinn, Cummins, Kase, Martin, & Weisman, 1996). This is

probably also true of nonvisual sensory dimensions, such as HOT�COLD.

Thus, the current literature supports the views that two of us developed

after these data were collected (Bianchi & Savardi, 2006, 2008a,b; Savardi &

Bianchi, 2009): namely, that we spontaneously perceive many nonlinguistic

forms of spatial contrariety. They studied a large sample of simple geometric
figures, body postures, and gestures; all of them have contraries. These results

support the hypothesis that the concept of contrariety (which also manifests

itself linguistically) is grounded in nonlinguistic perceived opposition.

Finally, the psychological reality of the structures we have uncovered is no

different than other lawful regularities discovered in psychology, such as Stevens’s

power law, or the colour circle obtained by Shepard (1962) using multidimensional

scaling. What Stevens and Shepard obtained are laws, not theories. They also

resemble our results because the mechanisms that underlie them are inaccessible to
introspection. So, as it stands, we see our description(s) of dimensions and their

poles as a collection of lawful regularities in search of a theory.
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APPENDIX 1. A REPLICATION OF STUDY 2

We wish to show: (1) that the use of the same participants in Study 2 as in Study 1 did not have

an effect on the results of Study 2 and (2) that the results are replicable with a different sample of

participants.

To that end, one of us (Ivana Bianchi) replicated Study 2 at the University of Macerata with

58 philosophy students. They were new to this sort of study. They formed 18 groups of three and

two groups of two.

We analysed the data as we did for Study 2. Figure A1 shows that the pattern of response

frequencies was the same for the original study and the replication, and Figure A2 shows that the

structure that emerged from the PCA was also very much the same.
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Figure A1. The mosaic plot shown in Figure 11 compared to the one for the replication study.

[To view this figure in colour, please visit the online version of this Journal.]

DIMENSIONS AND THEIR POLES 33

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
u
b
o
v
y
,
 
M
i
c
h
a
e
l
]
 
A
t
:
 
0
2
:
4
7
 
2
8
 
A
p
r
i
l
 
2
0
1
1



long−shrt
ampl−rstr

larg−smll

dens−sprs
sppr−unsp

far−near
wide−nrrw

asym−symm

lynd−stnd

full−empt

high−low

crvd−strg

open−clsd

many−few
dsrd−ordr

irrg−rglr
cmpl−smpl

mvng−stll
unbn−bndddeep−shll

thck−thin

incm−cmpl
snkn−fltn

end−bgnn

top−bttm

vrtc−hrzn
angl−rndd

uprg−upsdfat−slnd info−bhnd

abov−belw
insd−otsd

rght−left
obts−acut

cnvx−cncv
ascn−dscn

dvrg−cnvr

B−−

P−−

U−−

−−P

−N−

−P−

−R−

−−B
−−U

(a) Original Study 2 (unrotated version of Figure 12)

long−shrt

mvng−stll
dsrd−ordr

angl−rndd
end−bgnn sppr−unsp

far−near

high−low

ampl−rstr asym−symm

abov−belw

full−empt

irrg−rglr

unbn−bndd

snkn−fltn

larg−smll wide−nrrw
crvd−strgcmpl−smplmany−few

thck−thin
deep−shll

incm−cmpl

open−clsd

dens−sprs

vrtc−hrzninfo−bhnd
uprg−upsdtop−bttmfat−slnd

lynd−stnd

insd−otsd

cnvx−cncv
rght−left

obts−acut
ascn−dscn

dvrg−cnvr

B−−

P−−

U−−

−−P

−N−

−P−

−R−

−−B
−−U

(b) Replication of Study 2

Figure A2. Biplots of the first two principal components. [To view this figure in colour, please visit the online version of this Journal.]
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